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Random Variable Generation

Random Variable Generation

Simulation methods allows expanding the scope of
Bayesian inference. Because it’s usual that the posterior
distribution does not have known form.
Methods of simulation are based on the production of
random variables, originally independent random
variables, that are distributed according to a distribution
f that is not necessarily known.1

1Robert, C. Casella G. (2004). ‘Monte Carlo Statistical Methods ’.
Springer. Second Edition, pag 36.

3 / 89



Bayesian Econometrics: Simulation methods

Random Variable Generation

Random Variable Generation
Probability Integral Transform Method

The most basic method of generating samples takes advantage
of the ability of computers to generate values that can be
regarded as drawn independently from a uniform distribution
on (0, 1), U(0, 1). Such numbers are called pseudo-random
numbers, because they are produced as deterministic
sequences, but they reproduce the behavior of an iid sample
from uniform variable random (see Casella (2004)).2

2

Robert, C. Casella G. (2004). ‘Monte Carlo Statistical Methods ’.
Springer. Second Edition, pag 36.

Greenberg, E. (2008). ‘Introduction to Bayesian Econometrics ’.
Springer. pag 63.
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Random Variable Generation

Ramdom Variable Generation

The Inverse Transform
Probability integral transformation allows us to transform any
random variable into a uniform random variable and, more
importantly, vice versa. For example, suppose we wish to draw
a sample of values from a random variable that has d.f F (·),
assumed to be nondecreasing.

F (x) =

∫ x

−∞
f (t)dt

Consider the distribution of X , which is obtained by drawing U
from U(0, 1) and setting X = F−1(U), which implies
U = F (X )
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Random Variable Generation

Definition

For a non-decresing function on R the generalized inverse of
F , F−1 is the function defined by,

F−1(u) = inf {x : F (x) > u}

Lemma

If U ∼ U(0, 1) then the random variable F−1(U) has the
distribution F

Proof. For all u ∈ [0, 1] and for all x ∈ F−1([0, 1]), the
generalized inverse satisfies F (F−1(u)) > u and
F−1(F (x)) 6 x , therefore

{(u, x) : F−1(u) 6 x} = {(u, x) : F (x) > u}
and,

P(F−1(U) 6 x) = P(U 6 F (x)) = F (x)
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Random Variable Generation

Algorithm: Probability integral transform method

1 Draw u from U(0, 1).

2 Return y = F−1(u) as a draw from f (y)

Example 1. If X ∼ Exp(1), F (x) = 1− e−x . Solving for x in
u = 1− e−x gives x = −log(1− u). Therefore, if
U ∼ U(0, 1), then

X = −log(U) ∼ Exp(1)
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Random Variable Generation

Random Variable Generation
Probability Integral Transform Method

Example 2. Suppose we wish to draw a sample from a
random variable y with density function

f (y) =


3
8
y 2 if 0 6 y 6 2,

0, otherwise,


We first find the c.d.f for 0 6 y 6 2 by computing
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Random Variable Generation

Random Variable Generation
Probability Integral Transform Method

F (y) =
3

8

∫ y

0

t2dt =
1

8
y 3.

The next step is to draw a value U from U(0, 1) and set
U = 1

8
Y 3. We then solve to find Y = 2U1/3, which is a draw

from f (y).
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Random Variable Generation

Truncated distribution Suppose X has a d.f. F (X ) and that
we wish to generate values of X restricted to c1 ≤ X ≤ c2.
The distribution of the truncated values is
[F (X )− F (c1)] / [F (c2)− F (c1)] for c1 ≤ X ≤ c2. We
generate U ∼ U(0, 1) and set,

U =
F (X )− F (c1)

F (c2)− F (c1)
,

which implies that,

X = F−1(F (c1) + U [F (c2)− F (c1)])

is a drawing from the truncated distribution.
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Random Variable Generation

Multivariate Simulation

The multivariate most studied is the multivariate normal
Np(µ,Σ). To draw a sample from Np(µ,Σ), first draw p
values from N(0, 1) and place them in a p × 1 vector Z , so
that Z ∼ Np(0, Ip). Next write Σ = C ′C , where C is a p × p
upper-triangular Cholesky matrix. Finally, compute
X = µ + C ′Z , then

X ∼ Np(µ,Σ)
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Method of Composition

The method of composition uses the relationship

f (x) =

∫
g(x |y)h(y)dy ,

where f , g , and h are densities. The method is useful when we
know how to sample y from h(y) and x from g(x |y). By
drawing a y from h(y) and then an x from g(x |y), the value
of x is a drawing from f (x) (see Greenberg (2008)).3

3

Greenberg, E. (2008). ‘Introduction to Bayesian Econometrics ’.
Springer. pag 65.
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Method of Composition

Method of Composition

Example: For the heteroskedastic regression linear model we
will show that if εi |λi ∼ N(0, λ−1i σ2), λi ∼ G (ν/2, ν/2), and

f (εi |σ2) =

∫
g(εi |λi , σ2)h(λi)dλi ,

where g(εi |λi , σ2) is the density function of N(εi |0, λ−1i σ2)
and h(λi) is the density function of G (λi |ν/2, ν/2), then
f (εi |σ2) is the density function of t(v , 0, σ2). This result
shows that we can simulate draws from a t-distribution with ν
degrees of freedom if we know how to simulate draws from a
gamma distribution and from a normal distribution.
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Accept- Reject

There are many distributions for which the inverse transform
method fails to generate the required random variables. For
these cases, we must turn to indirect methods, that is,
methods in which we generate a candidate random variable
and only accept it subject to passing a test.

The fundamental theorem of simulation

Since f (x) =
∫ f (x)

0
du, then simulating X ∼ f (x) is equivalent

to simulate

(X ,U) ∼ U{(x , u) : 0 < u < f (x)}
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Accept-Reject

The accept-reject algorithm can be used to simulate values
from a density function f (·) (called target density). We use a
simpler density g (called instrumental or candidate density),
to generate the random variable. The only constraints we
impose on this candidate density g are that,

1 f and g have compatible supports (i.e, g(x) > 0 when
f (x) > 0).

2 There is a constant c > 1 with f (x)/g(x) ≤ c for all x .
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Accept–Reject Algorithm

Algorithm: Accept-Reject method

1 Generate Y ∼ g , U ∼ U(0, 1);

2 Accept X = Y if U ≤ f (Y )/cg(Y );

3 Return to 1 otherwise.
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Accept–Reject Algorithm

Why this method work?. Consider the distribution of the
accepted values of y , h[y |u ≤ f (y)/cg(y)]. By Bayes theorem
and the property of the uniform distribution, P(u ≤ t) = t,
0 ≤ t ≤ 1, we have

h[y |u ≤ f (y)/cg(y)] =
P[u ≤ f (y)/cg(y)|y ]g(y)∫
P[u ≤ f (y)/cg(y)|y ]g(y)dy

=
[f (y)/cg(y)]g(y)

(1/c)
∫
f (y)dy

= f (y).

Note that ∫
P[u ≤ f (y)/cg(y)|y ]g(y)dy =

1

c

is the probability that a generated value of y is accepted.
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Accept–Reject Algorithm

Accept-Reject Algorithm

Example 3. Let the target density be N(0, 1) and the
proposal density be the Laplace distribution,
g(y) = (1/2)e−|y |.
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Importance Sampling

Suppose that X ∼ f (X ) and we wish to estimate

E [g(X )] =

∫
g(x)f (x)dx ,

but the integral is not computable analytically and the method
of composition is not available because we cannot sample from
f (x). The importance sampling method, a type of Monte
Carlo integration, works as follows.
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Importance Sampling

Importance Sampling

Let h(X ) be a distribution from which we know how to
simulate and consider the integral

E [g(X )] =

∫
g(x)f (x)

h(x)
h(x)dx .

This integral can be approximated by drawing a sample of G
values from h(X ), with values X (g), and computing

20 / 89



Bayesian Econometrics: Simulation methods

Importance Sampling

Importance Sampling

E [g(X )] ≈ 1

G

∑
g(X (g))

f (X (g))

h(X (g))
.

This expression can be regarded as a weighted average of the
g(X (g)), where the importance weights are f (X (g))/h(X (g)).
The main issue in implementation of importance sampling is
the choice of h(·). To find the suitable distribution we examine
the variance of the estimate.4

4

Greenberg, E. (2008). ‘Introduction to Bayesian Econometrics ’.
Springer. pag 70.
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Importance Sampling

Importance Sampling

Since var(ĝ) = E (ĝ 2)− E (ĝ)2 and the latter converges to
E [g(X )]2, we may concetrate on

E (ĝ 2) =

∫
g(x)2

(
f (x)

h(x)

)2

h(x)dx .

This integral is large when f (x)/h(x) is large, a situation that
tends to occur when the tail values of h(·) are very small
compared to the tail values of f (·). In general, Var(ĝ) is small
when f (·)/g(·) does not vary greatly.
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Importance Sampling

Importance Sampling

Example: we wish to approximate E [(1 + x2)−1], where x ∼
exp(1), truncated to [0, 1]; that is, we approximate the integral

1

1− e−1

∫ 1

0

1

1 + x2
e−xdx .
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Importance Sampling

Importance Sampling

We choose as an importance function Beta(2, 3) because it is
defined on [0, 1] and because, for this choice of parameters,
the match between the beta function and target density is
good over part of the [0, 1] interval. Algorithm:

Generate a sample of G values, X (1), . . . , X (G) from
Beta(2, 3).

Calculate

1

G

G∑
1

(
1

1 + (X (g))2

)(
e−X

(g)

1− e−1

)(
B(2, 3)

X (g)(1− (X (g))2)

)
.
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Importance Sampling

Importance Sampling

By applaying the previous algorithm and setting G = 10000,
we obtain an estimate of 0.8268.
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Markov chains Monte Carlo: Theory

Finite State Spaces

Consider a stochastic process indexed by t, Xt that takes
values in the finite set S = [1, 2, ..., s].

pij is the probability that Xt+1 = j given that Xt = i (pij is a
transition probability).

pij = P(Xt+1 = j |Xt = i), i , j ∈ S

Additionally, since the process remains in S:

s∑
j=1

pij = 1
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Markov chains Monte Carlo: Theory

Finite State Spaces

The s × s transition matrix:

P =

(
p11 p12
p21 p22

)
where the ith row represents the distribution of the process at
t + 1, given that it is in state i at t.

The distribution of the state at t + 2 p
(2)
ij is given by the

expression:

p
(2)
ij =

∑
k

pikpkj

The matrix of p
(2)
ij is given by PP ≡ P2. The values of p

(n)
ij are

the ijth entries in the matrix Pn.
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Markov chains Monte Carlo: Theory

Finite State Spaces

When pij = pj for all i, the matrix is of completely random
motion or independence.
If p

(n)
ij >0 for some n ≥ 1, j is accessible from i :

i −→ j

If i −→ j and j −→ i , then: i ←→ j
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Markov chains Monte Carlo: Theory

Finite State Spaces

An irreducible Markov process is a process where starting
from state i, the process can reach any other state with
positive probability.
Another important property of a chain is the periodicity. For
example, whenever there are positive probabilities of returning
to a state in either of two subsets exist only at even values of
n. If the period is 1 for all states, the chain is said to be
aperiodic.
More formally, if i −→ j , then the period of i is the greatest
common divisor of the integers in the set
A = [n ≥ 1 : p

(n)
ij > 0]. If di is the period of i , then p

(n)
ii = 0

whenever n is not a multiple of di , and di is the largest integer
with this property. Note that a chain is aperiodic if p

(n)
ij ≥ 0

for all i and for sufficiently large n.
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Markov chains Monte Carlo: Theory

Finite State Spaces

Markov Chains Monte Carlo methods (MCMC) are based on
the following statement. π = (π1, π2, . . . , πs)

′ is an invariant
distribution for P if π′ = π′P , or:

πj =
∑
i

πipij , j = 1, ..., s

It can be interpreted as the probability of starting the process
at state i with probability πi and then moving to state j with
distribution pij .
A necessary condition for P being a unique invariant
distribution is to be irreducible.
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Markov chains Monte Carlo: Theory

Finite State Spaces

Theorem (Theorem 6.1)

Suppose S is finite and pij>0 for all i,j. Then there exists a
unique probability distribution πj , j ∈ S , such that∑

i πipij = πj for all j ∈ S . Moreover,

|p(n)ij − πj | ≤ rn

where 0<r<1 for all i, j and n ≥ 1.

In a finite state space with positive probabilities there is a
unique invariant distribution, and pnij convergences at a
geometric rate.
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Markov chains Monte Carlo: Theory

Finite State Spaces

If we can find a Markov process for which the invariant
distribution is the target distribution, we can simulate draws
from the process to generate values from the target
distribution.
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Markov chains Monte Carlo: Theory

Finite State Spaces

Theorem (Theorem 6.2)

Let P be irreducible and aperiodic over a finite state space.
Then there is a unique probability distribution π such that∑

i πipij = πj for all j ∈ S and

|p(n)ij − πj | ≤ rn/ν

for all i,j ∈ S, where 0<r<1, for some positive integer ν
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Markov chains Monte Carlo: Theory

Countable State Spaces

Irreducibility and aperiodicity no longer imply the existence of
a unique invariant distribution when S is countable but not
finite.
Let Pj(A) denote the probability that event A occurs, given
that the process starts at j . Then state j is called recurrent if:

Pj(Xn = j i .o) = 1

Where i.o. means “infinitely often”.
The latter means that the process will return to state j an
infinite number of times with probability 1. If a state is not
recurrent, it is then called transient.
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Markov chains Monte Carlo: Theory

Countable State Spaces

Recurrence is not strong enough to imply a unique invariant
distribution. To specify a stronger condition, let τ

(1)
j be the

time it takes for the process to make its first return to state j :

τ
(1)
j = min {n > 0 : Xn = j}

A state j is called positive recurrent if Eτ
(1)
j <∞.

Otherwise, it is null recurrent.
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Markov chains Monte Carlo: Theory

Countable State Spaces

Theorem (Theorem 6.3)

Assume that the process is irreducible. Then:
1 If all states are recurrent, they are either all positive recurrent or all

null recurrent.

2 There exists an invariant distribution if and only if all states are
positive recurrent. In that case, the invariant distribution π is
unique and is given by:

πj = (Ejτ
(1)
j )−1

3 In case the states are positive recurrent, for any initial distribution,
if Eπ|f (X1)|<∞

lim
n−→∞

1

n

n∑
m=1

f (Xm) = Eπf (X1)
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Markov chains Monte Carlo: Theory

Countable State Spaces

Under the conditions stated in the theorem, we know that
there is a unique invariant distribution and that averages of
functions evaluated at sample values converge to their
expected values under the invariant distribution.

Since a possible function is the indicator function 1(Xn = i)
which has expected value πi . This value can be estimated
from sample data.
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Markov chains Monte Carlo: Theory

Countable State Spaces

Theorem (Theorem 6.4)

If P is an aperiodic recurrent chain, lim
n−→∞

P (n) exists. If P is

an aperiodic positive-recurrent chain, then lim
n−→∞

P (n) = A,

where A is a matrix whose rows are the invariant distribution

Theorem (Theorem 6.5)

Suppose P is π-irreducible and that π is an invariant
distribution for P . Then P is positive recurrent and π is the
unique invariant distribution of P. If P is also aperiodic, then
for π-almost all x,

||Pn(x , .)− π|| −→ 0.
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Markov chains Monte Carlo: Theory

Countable State Spaces

In the latter theorem, which also applies to the continuous
case, π-irreducible means that for some n, Pn(x ,A)>0 for any
set A such that π(A)>0. This implies that recurrence need
not be assumed explicitly if it is known that an invariant
distribution exists.
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Markov chains Monte Carlo: Theory

Continuous State Spaces

Now suppose that the states of a Markov process take values
in R. The counterpart of the transition probabilities is the
transition kernel or transition density p(x , y). It is denoted by
p(x , y) because it is the counterpart of pij , but it is more
instructive to interpret it as the conditional density p(y |x).
The Markov property is captured by assuming that the joint
density, conditional on the initial value X0 = x0, is given by:

f(X1,...,Xn|X0=x0)(X1, ...,Xn) = p(x0, x1)p(x1, x2)...p(xn−1, xn)
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Markov chains Monte Carlo: Theory

Continuous State Spaces

Given that the process is currently at state x, the probability
that it moves to a point in A ⊆ R is given by:

P(x ,A) =

∫
A

p(x , y)dy

The nth step ahead transition is computed analogously as that
in the Finite State Spaces case:

P (n)(x ,A) =

∫
R

P(x , dy)P (n−1)(y ,A)

An invariant density π(y) for the transition kernel p(x , y) is a
density that satisfies:

π(y) =

∫
R

π(x)p(x , y)dx
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Markov chains Monte Carlo: Theory

Continuous State Spaces

For process in continuous state spaces, the definitions of
irreducibility and aperiodicity are as before with p(x , y) in
place of pij . To define recurrence for continuous state spaces,
let Px(A) denote the probability of event A given that the
process started at x. Then, a π-irreducible chain with invariant
distribution π is recurrent if for each B with π(B)>0,

Px(Xn ∈ B i .o)>0 for all x,

Px(Xn ∈ B i .o) = 1 for π-almost all x

The chain is Harris Recurrent if Px(Xn ∈ B i .o.) = 1 for all x
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Markov chains Monte Carlo: Theory

Continuous State Spaces

Following theorems use the total variation distance between
two measures, defined as follows:

The total variation norm of a bounded, signed measure λ is
||λ|| = supAλ(A)− infAλ(A), and the total variation distance
between two such measures λ1 and λ2 is ||λ1 − λ2||

Theorem (Theorem 6.6)

Suppose that P is π-irreducible and that π is an invariant distribution for
P. Then P is positive recurrent and π is the unique invariant distribution
of P. If P is also aperiodic, then for π-almost all x,

||P(n)(x , .)− π|| −→ 0,

With ||.|| denoting the total variation distance.
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Markov chains Monte Carlo: Theory

Continuous State Spaces

Theorem (Theorem 6.7)

If ||P (n)(x , .)− π|| −→ 0 for all x , the chain is π-irreducible,
aperiodic, positive recurrent, and has invariant distribution π.
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Markov chains Monte Carlo: Theory

Continuous State Spaces

These theorems form the basis of MCMC methods. In
practice, the researcher seeks to construct an irreducible,
aperiodic and positive recurrent transition kernel for which the
invariant distribution is the target distribution.
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Gibbs sampler algorithm

Introduction

The Gibbs sampler algorithm is one of the most used (and
useful) Markov chain Monte Carlo (MCMC) methods available
to sample from non-standard distributions in Bayesian analysis.
It is a special case of the Metropolis-Hastings (MH) algorithm,
but originated from a different background.

46 / 89



Bayesian Econometrics: Simulation methods

Gibbs sampler algorithm

Problem

The problem we are faced with in MCMC theory is to
construct a kernel or transition density p(x , y) for which the
invariant distribution π is the target distribution. Remember
that π is given by

π(y) =

∫
π(x)p(x , y)dx

where x and y are the “previous” and “current” states
respectively. In our case, the random variables of interest are
the parameters θ and π(θ|y) is the target distribution.
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Gibbs sampler algorithm

Gibbs Sampler

The Gibbs algorithm proposes the following transition kernel
for two parameter blocks

p(x , y) = π(y2|y1)π(y1|x2)

where x = (x1, x2) and y = (y1, y2). We can see that in order
for the Gibbs sampler to be of use, we must first obtain the
conditional distributions of each parameter block in terms of
the others.
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Gibbs sampler algorithm

Gibbs Sampler

Proof that the Gibbs kernel leads to the invariant distribution:

π(y) =

∫
π(x)p(x , y)dx

=

∫
π(x1, x2)π(y1|x2)π(y2|y1)dx1dx2

= π(y2|y1)

∫
π(y1|x2)π(x1, x2)dx1dx2

= π(y2|y1)

∫
π(y1|x2)π(x2)dx2

= π(y2|y1)

∫
π(y1, x2)dx2

= π(y2|y1)π(y1) = π(y1, y2) = π(y)
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Gibbs sampler algorithm

Gibbs Sampler

A word of caution on the careless use of the Gibbs sampler
algorithm:

Caution

Even when the conditional distributions π(y1|x2) and π(y2|y1)
are well defined and can be simulated from, the joint
distribution π(y) may not correspond to any proper
distribution. This is specially true when using improper priors,
so care is to be taken! (See Robert & Casella, 2004, section
10.4.3)
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Gibbs sampler algorithm

Algorithm

For two parameter blocks

1 Choose a starting value x
(0)
2 .

2 At the first iteration, draw

x
(1)
1 from π(x1|x (0)2 ),

x
(1)
2 from π(x2|x (1)1 ).

3 At the g th iteration, draw

x
(g)
1 from π(x1|x (g−1)2 ),

x
(g)
2 from π(x2|x (g)1 ).
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Gibbs sampler algorithm

Algorithm

For d parameter blocks

1 Choose starting values x
(0)
2 , . . . , x

(0)
d .

2 At the g th iteration, draw

x
(g)
1 from π(x1|x (g−1)2 , . . . , x

(g−1)
d ),

x
(g)
2 from π(x2|x (g)1 , x

(g−1)
3 , . . . , x

(g−1)
d ),

...

x
(g)
d from π(xd |x (g)1 , . . . , x

(g)
d−1).
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Gibbs sampler algorithm

Simulation Exercise

Initial setting for the simulation:

N = 1000

β = (1.5,−3.5, 2)′

x1 ∼ NN(0, 22) , x2 ∼ NN(0, 32) ,X = (1, x1, x2)

y = Xβ + µ , µ ∼ NN(0, 1)

Prior distributions:

β ∼ N3(β0,B0)

σ2 ∼ IG(α0/2, δ0/2)
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Gibbs sampler algorithm

Simulation Exercise

Which results in posterior distributions

β|σ2, y ,X ∼ N3(β̄,B1)

σ2|β, y ,X ∼ IG(α1/2, δ1/2)

with

B1 = (σ−2X ′X + B−10 )−1

β̄ = B1(σ−2X ′y + B−10 β0)

α1 = α0 + N

δ1 = δ0 + (y − Xβ)′(y − Xβ)
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Gibbs sampler algorithm

Simulation Exercise

The Gibbs algorithm for this simulation is therefore

1 Choose a starting value σ2(0).

2 At the g th iteration, draw

β(g) from N3(β̄(g),B
(g)
1 ),

σ2(g) from IG(α1/2, δ
(g)
1 /2).

with

B
(g)
1 = (σ−2(g−1)X ′X + B−10 )−1

β̄ = B
(g)
1 (σ−2(g−1)X ′y + B−10 β0)

δ
(g)
1 = δ0 + (y − Xβ(g))′(y − Xβ(g))
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Simulation Exercise

Figure: Trace plots for the parameters in 10,000 draws
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Gibbs sampler algorithm

Simulation Exercise

Figure: Density plots for the parameters in 10,000 draws
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Metropolis-Hastings Algorithm

The MH algorithm is more general than the Gibbs
sampler because it does not require that the full set of
conditional distributions be available for sampling.

To generate a sample from f (X ), where X may be a
scalar or vector random variable, the first step is to find a
kernel p(X ,Y ) that has f (·) as its invariant distribution.
To that end, we introduce the idea of a reversible kernel,
defined as a kernel q(·, ·) for which:
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Metropolis-Hastings Algorithm

f (x)q(x , y) = f (y)q(y , x).

if q is reversible,

P(y ∈ A) =
∫
A

∫
Rd f (x)q(x , y)dxdy

=
=

∫
A

∫
Rd f (y)q(y , x)dxdy

=
=

∫
A
f (y)dy .
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Metropolis-Hastings Algorithm

This shows that f (·) is the invariant distribution for a
kernel q(·, ·) because the probability that y is contained
in A is computed from f (·).
The fact that a reversible kernel has this property can help
in finding a kernel that has the desired target distribution.
We now follow the derivation of the algorithm. The trick
is to make an irreversible kernel reversible.5

5

Greenberg, E. (2008). ‘Introduction to Bayesian Econometrics
’. Springer. pag 96-99.
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Metropolis-Hastings Algorithm

If a kernel is not reversible, for some pair (x , y) we have

f (x)q(x , y) > f (y)q(y , x).

The MH algorithm deals with this situation by multiplying
both sides by a function α(·, ·) that turns the irreversible kernel
q(·, ·) into the reversible kernel p(x , y) = α(x , y)q(x , y) :

f (x)α(x , y)q(x , y) = f (y)α(y , x)q(y , x). (1)
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Metropolis-Hastings Algorithm

The expression α(x , y)q(x , y) is interpreted as follows: if
the present state of the process is x , generate a value y
from the kernel q(x , y) and make the move to y with
probability α(x , y). If the move to y is rejected, the
process remains at x .

Note that this transition kernel combines a continuous
kernel q(x , y) and a probability mass function α(x , y).
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How to defined α(x , y) is the next question. Suppose that

f (x)q(x , y) > f (y)q(y , x).

Roughly speaking, this means that the kernel goes from x
to y with greater probability than it goes from y to x .

Accordingly, if the process is at y and the kernel proposes
a move to x , that move should be made with high
probability. This can be done by setting α(y , x) = 1. But
then, α(x , y) is determined because, from (2),

f (x)q(x , y)α(x , y) = f (y)q(y , x)
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Metropolis-Hastings Algorithm

implies

α(x , y) =


min

{
f (y)q(y ,x)
f (x)q(x ,y)

, 1
}

if f (x)q(x , y) 6= 0,

0, otherwise.


The condition that f (x)q(x , y) 6= 0 is usually satisfied in
practice because the starting value is always chosen in the
support of the distribution and the kernel usually generates
values in the support of the distribution.
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Metropolis-Hastings Algorithm

MH algorithm

1 Given x, generate Y from q(x , y).

2 Generate U from U(0, 1). If

U 6 α(x ,Y ) = min

{
f (Y )q(Y , x)

f (x)q(x ,Y )
, 1

}
return Y . Otherwise, return x and go to 1.

Although we have shown that the MH kernel has the desired
target distribution, this is only a necessary condition for
convergence to the target.
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Metropolis-Hastings Algorithm

Example: MH for Beta(3, 4) with U(0, 1) proposal

1 Set x (0) equal to a number between zero and one.

2 At the gth iteration, generate U1 and U2 from U(0, 1).

3 If

U1 6 α(x (g−1),U2) =
U2

2 (1− U2)3

(x (g−1))2(1− x (g−1))3
,

set x (g) = U2. Otherwise set x (g) = x (g−1).

4 Go to 2 and continue until the desired number of
iterations is obtained.
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Theorem (Theorem 7.2, Greenberg)

Suppose P is a π-irreducible Metropolis kernel. Then P is
Harris recurrent.
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The next implementation issue is how to choose the proposal
density q(., .). There are several possible choices and the
selection is a matter of judgment. Several factors need to be
taken into account:

1 The kernel should generate proposals that have a
reasonably good probability of acceptance; if not, the
same value will be returned often, and the algorithm will
mix poorly

2 There may be a high acceptance rate if the kernel
generates only proposals that are close to the current
point, but the sampling may then be confined to a small
part of the support, again leading to poor mixing.
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Two straightforward (not necessarily good) kernels are the
random-walk kernel and the independence kernel. For the
former, the proposal y is generated from the current value x
by the addition of a random variable or vector u, y = x + u,
where the distribution of u is specified. If that distribution is
symmetric around zero, (h(u) = h(−u)), the kernel has the
property that q(x , y) = q(y , x) ,which implies that
α(x , y) = f (y)/f (x). Accordingly, with a random-walk kernel,
a move from x to y is made for certain if f (y) > f (x). A
move from a higher density point to a lower density point is
not ruled out, but the probability of such a move f (y)/f (x) is
less than one.
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The independence kernel has the property q(x , y) = q(y); that
is, the proposal density is independent of the current state of
the chain. For this type of kernel:

α(x , y) =
f (y)/q(y)

f (x)/q(x)
,

and our comments about the probability of a move are similar
to those about the random-walk chain if f(.) is replaced by
f(.)/q(.)
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A “tailored” kernel is recommended: construct a kernel that
approximates the target distribution. This may be done by
choosing a fat-tailed distribution, such as the multivariate t
with small ν, whose mean and scale matrix are chosen to
coincide with the mode and negative inverse of the
second-derivative matrix at the mode, respectively. An
example of a tailored kernel may be found in section 9.2
(Greenberg). If there is just one parameter block, the tailored
kernel is an independence kernel. If there is more than one
block, the tailored kernel for the block being updated may
depend on the current values of parameters in the other blocks.
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MH algorithm with two blocks
1 Let the state be (x1, x2) at the g th iteration and (y1, y2)

at the g + 1st iteration. Draw Z1 from q1(x1,Z1|x2) and
U1 from U(0, 1)

2 If

U1 ≤ α(x1,Z1|x2) =
f (Z1, x2)q1(Z1, x1|x2)

f (x1, x2)q1(x1,Z1|x2)
,

return y1 = Z1. Otherwise return y1 = x1
3 Draw Z2 from q2(x2,Z2|y1) and U2 from U(0,1).
4 If

U2 ≤ α(x2,Z2|y1) =
f (y1,Z2)q2(Z2, x2|y1)

f (y1, x2)q2(x2,Z2|y1)
,

return y2 = Z2. Otherwise return y2 = x2.
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MH algorithm with two blocks
In this algorithm, the kernel q1(x1,Y1|x2) is analogous to
q(x ,Y ); it generates a value Y1 conditional on the current
value x1 in the same block and the current value x2 in the
other block. If “tailored” proposal densities are used, new
densities are specified for q1(x1,Z1|x2) and q2(x2,Z2|y1) for
each value of x2 and y1, respectively. This algorithm can be
extended to an arbitrary number of blocks.
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Having introduced blocks of parameters, we can show that the
Gibbs sampler is a special case of the Metropolis-Hastings
Algorithm. Consider α(., .) when the kernel for moving from
the current state or value x1 to the proposal value Y1 is the
conditional distribution f (x1|x2), which is assumed to be
available for sampling. Then

α(x1,Y1|x2) =
f (Y1, x2)f (x1|x2)

f (x1, x2)f (Y1|x2)
,

but, since f (Y1|x2) = f (Y1, x2)/f (x2) and
f (x1|x2) = f (x1, x2)/f (x2) it follows that α(x1,Y1|x2) = 1,
showing that the Gibbs algorithm is an MH algorithm where
the proposal is always accepted.
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When implementing the MH algorithm for two blocks of
parameters, Gibbs sampling may be employed in any block for
which the conditional distributions are available for sampling.
In the remaining blocks, the MH algorithm may be employed
in the usual way, that is, by finding suitable proposal densities
and accepting with probability α(x , y). At each iteration, the
algorithm works through the blocks, either moving to a new
value or retaining the current value of the variables in the
block.
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To check whether the chain has converged to its posterior
distribution, we use the following methods:

Visual inspection.

Gelman and Rubin Diagnostic.

Geweke Diagnostic.
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Visual Inspection

One way to see if our chain has converged is to see how
well our chain is mixing, or moving around the parameter
space.

If our chain takes a long time to move around the
parameter space, then it will take longer to converge.

We can see how well our chain is mixing through visual
inspection.

We need to do inspection for every parameter.
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Convergence Diagnostics
Visual Inspection (Traceplots)
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Convergence Diagnostics
Visual Inspection (Autocorrelation plots)
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Gelman and Rubin Diagnostic

Gelman (especially) argues that the best way to identify
non-convergence is to simulate multiple sequences for
over-dispersed starting points.

The intuition is that the behavior of all of the chains
should be basically the same.

Or, as Gelman and Rubin put it, the variance within the
chains should be the same as the variance across the
chains.
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Gelman and Rubin Diagnostic

Run m > 2 chains of length 2n from overdispersed
starting values.

Discard the first n draws in each chain.

Calculate the within-chain and between-chain variance.

Calculate the estimated variance of the parameter as a
weighted sum of the within-chain and between-chain
variance.

Calculate the potential scale reduction factor.
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Convergence Diagnostics
Gelman and Rubin Diagnostic (Within Chain Variance)

W =
1

m

m∑
j=1

s2j ,

where

s2j =
1

n − 1

n∑
i=1

(θij − θ̄j)2,

s2j is just the formula for the variance of the jth chain. W is
then just the mean of the variances of each chain.
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Gelman and Rubin Diagnostic (Between Chain Variance)

B =
n

m − 1

m∑
j=1

(θ̄j − ¯̄θ)2,

where

¯̄θ =
1

m

m∑
j=1

θ̄j

This is the variance of the chain means multiplied by n
because each chain is based on n draws.
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Gelman and Rubin Diagnostic (Estimated Variance)

We can then estimate the variance of the stationary
distribution as a weighted average of W and B .

ˆvar(θ) =

(
1− 1

n

)
W +

1

n
B

Because of overdispersion of the starting values, this
overestimates the true variance, but is unbiased if the starting
distribution equals the stationary distribution (if starting
values were not overdispersed).
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Gelman and Rubin Diagnostic (Potential Scale Reduction Factor)

The potencial scale reduction factor is

R̂ =

√
ˆvar(θ)

W

When R̂ is high (perhaps greater than 1.1 or 1.2), then we
should run our chains out longer to improve convergence to
the stationary distribution.
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Convergence Diagnostics
Gelman and Rubin Diagnostic (Potential Scale Reduction Factor)

If we have more than one parameter, then we need to
calculate the potential scale reduction factor for each
parameter.

We should run our chains out long enough so that all the
potential scale reduction factors are small enough.

We can then combine the mn total draws from our chains
to produce one chain from the stationary distribution.
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Gelman and Rubin Diagnostic (Potential Scale Reduction Factor)

Potential scale reduction factors:

Point est. 97.5% quantile

Media 1 1

Precision 1 1

Multivariate psrf

1
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Gelman and Rubin Diagnostic (Potential Scale Reduction Factor)

We can see how the psrf evolves through the iterations using
the gelman.plot() function.
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Figure: Gelman Plot
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Convergence Diagnostics

Example of the Gibbs Sampler
Geweke Diagnostic

The Geweke test takes two parts of the chain (usually the first
10 percent and last 50 percent) and compares the mean of
both parts, using the differences of means test in order to see
if the two parts of Markov Chain are from the same
distribution (null hypothesis). The test statistic is a standard
Z-score with the standard errors adjusted for autocorrelation.

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

Media Precision

-1.315e+00 1.011e-07
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